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ON PANEL FLUTTER AND DIVERGENCE OF INFINITELY LONG UNSTIFFENED AND
RING-STIFFENED THIN-WALLED CIRCULAR CYLINDERS'*®

By RoseErT W. LEONARD and Jorn M. HEDGEPETH

SUMMARY

A preliminary theoretical tnvestigation of the panel flutter and
divergence of infinitely long, unstiffened and ring-stiffened
thin-walled circular cylinders is described. Linearized un-
steady potential-flow theory is wtilized in conjunction with
Donnell’s eylinder theory to obtain equilibrium equations for
panel flutter. Where necessary, a simplified version of
Fligge’s cylinder theory is used to obtain greater accuracy.
By applying Nygquist diagram technigques, analytical criteria
Sor the location of stability boundaries are derived. A limited
number of computed results are presented.

INTRODUCTION

Although considerable effort has been expended in study-
ing the flutter and divergence of thin, flat panels exposed to
an airstream (see, for example, refs..1 to 9), little is known
of the importance of similar aeroelastic phenomena in the
design of thin-walled cylindrical missile bodies or of other
aireraft components where thin, curved panels are used.
The purpose of this report is to describe a preliminary
theoretical investigation of the aeroelastic stability of such
configurations. Analytical criteria for the determination of
panel-flutter and panel-divergence boundaries for infinitely
long, unstiffened and ring-stiffened thin-walled circular
cylinders are presented along with a limited number of
computed results.
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distance between ring stiffeners

smplitude of mth term in expansion for lateral
motion of ring-stiffened cylinder
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speed of sound in air

speed of sound in fluid inside cylinder
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1 Buporsedes NACA Technical Note 3638 by Robert W. Leonard and John M. Hedgepeth, 1958,

outside and inside air-force functions for vi-
brating ring (see egs. (34) and (35), respec-
tively)

Hankel functions of first and second kind,
respectively, of order »

thickness of cylinder wall

Imaginary part

modified Bessel function of first kind of order »

Bessel function of first kind of order n

integer

modified Bessel function of second kind of order n
dimensionless frequency of harmonic vibration,

v—a;for unstiffened cylinder andi—’%for ring-

stiffened cylinder

resonant frequencies of internal air-force func-
tion for unstiffened cylinder (see eq. (22))

function defined by equation (8)

function defined by equation (9)

outward lift force on c¢ylinder wall

amplitude of harmonically varying outward
lift force for unstiffened cylinder

amplitude of-mth term in expansion for outward
1ift force for stiffened cylinder

Mach number of flow along vibrating cylinder

Mach number of external or internal flow along
stationary cylinder

integer, number of longitudinal half-waves in
each bay of ring-stiffened cylinder

function defined by equation (44)

integer, number of full waves around circum-
ference of cylinder

forces exerted on cylinder wall by ring stiffeners

amplitudes of harmonically varying reaction
forces exerted by ring stiffeners

radius of cylinder

real part

radial coordinate

time

lateral deflection of cylinder wall, positive
outward
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w amplitude of lateral motion of cylinder wall for
unstiffened cylinder

z longitudinal coordinate for vibrating cylinder

2 longitudinal coordinate for stationary cylinder

z argument of Bessel functions for supersonic
relative flow, [7[vVE&—1 for unstiffened cyl-
inder and |m|a/£—1 for stiffened cylinder

a aspect-ratio parameter, Rx/a

Bm function defined after equation (39)

o(z) Dirac delta function, 8(z)=0 for 25<0;
f mB(:c)da;=1

€ damping coefficient

¢ argument of Bessel functionsforsubsonicrelative
flow, [»}+/1—# for unstiffened cylinder and
|m|ay1—£ for stiffened cylinder

0 angular circumferential coordinate

M Poisson’s ratio

v wave number of longitudinal waves in unstiffened
cylinder A

v dimensionless wave number, Ry

£ dummy variable

p mass density of air

p mass density of fluid inside cylinder

Ps mass density of cylinder material

05,0 midplane stresses in circumferential and longi-

L tudinal directions, positive in tension

06,0 dimensionless midplane stresses, o3/ and o./E,
respectively

Q parameter defined after equation (8)

Qs parameter defined after equation (39)

) frequency of harmonic vibration

vt operator (2- L _b_’)’

@ TR or

v inverse of operator v+

Subscripts:

cr critical value

min minimum value

max maximum value

Primes are used to indicate differentiation with respect to
complete argument. Subscript notation is used to denote
partial differentiation.

METHOD OF APPROACH

The configuration under consideration consists of a

thin-walled unstiffened or ring-stiffened circular cylinder

extending to infinity in the positive and negative z-direc-
tions. (See fig. 1.) The cylinder is filled with a stationary
fluid and is surrounded by air flowing in the positive
z-direction at & Mach number A4. The effects of midplane
tensile stresses in both the circumferential and longitudinal
directions and of a small amount of structural damping are
taken into account.

(a) Unstiffened cylinder.
() Ring-stiffened cylinder.

Freure 1.—Infinitely long, thin-walled circular cylinder with air
flow outside and stationary fluid inside.

For simplicity in the analysis, it is assumed that the de-
formations of the cylinder walls can in most cases be ade-
quately described by Donnell’s differential equation. (See
ref. 10.) It is kept in mind, however, that the validity of
Donnell’s theory is limited to cases in which there are a
large number of circumferential waves; where this condition
is violated, a simplified version of Fliigge’s cylinder theory
(see refs. 11 and 12) is employed to improve the accuracy
of the results.

The problem to be considered is the determination of those
combinations of the parameters characterizing the cylinder
and its environment that correspond to the boundary be-
tween states of stable and unstable motion. For the pur-
poses of this report, a system is considered stable if its

-
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motion is either damped or purely sinusoidal; only timewise
divergent motion is considered to be unstable. In order to
determine the stability boundary itself, attention can be
restricted to simple harmonic motion. However, such
simple-harmonic-motion analyses often yield a multiplicity
of boundaries, and it is necessary to derive equilibrium
conditions for divergent oscillatory motions in order to
determine the degree of instability in regions separated by
the various boundaries and, thus, to identify the primary
stability boundary.

In line with the foregoing discussion, the method of ap-
proach is first to derive the equilibrium conditions for si-
nusoidel motion. These conditions are then extended to
apply to divergent motion by means of analytic continua-
tion. A Nyquist diagram technique is used to determine
states of stability and stability boundaries.

UNSTIFFENED CYLINDER
DERIVATION OF EQUATIONS

It is assumed herein that the cylinder wall may deform
into any number of sinusoidal waves around its circumfer-
ence and into sinusoidal waves of any wave length and
constant amplitude along its length and, further, that the
motion is simple harmonic in time; spacewise divergent
motion (motion increasing in amplitude along the cylinder)
is specifically excluded. Thus, the lateral deflection of the
cylinder wall may be written

w(z,0,)=Re@e~"*e!**cos nf)

=Re [’flﬁe—h(z-% ) cos nﬁ]

where 75 is the complex amplitude of the motion, » is the
real wave number of the longitudinal waves, n is the num-
ber of full waves around the circumference, and « is the
frequency of oscillation. This assumed deflection shape
will be the basis for the determination of the air forces
exerted on the cylinder, the equilibrium condition, and,
through it, the criteria for flutter. Note that n=0 and
n=1 have been specifically excluded from consideration in
this panel-flutter analysis because neither of these two
motions involves panel action. The first value n=0 repre-
sents pure dilation or contraction of the cross section; the
second value n=1 merely represents & rigid-body translation
of the cross section.

Air forces.—The air forces exerted on an infinite cylinder
vibrating harmonicelly in still air have been reported in the
literature. (See, for example, ref. 13.) Although some of
these results can be applied to the present problem of de-
termining the forces exerted on an oscillating cylinder in
moving air, it is convenient to derive this result directly,
The unsteady-flow problem can be reduced to a steady-flow
problem by means of a moving coordinate system in a
manner similar to that of reference 7.

n=2,3,4,...) (@
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Accordingly, the perturbation pressures exerted by a
steady external or internal flow of Mach number A, on a
stationary cylinder deformed in the shape

w=Re(we = cos nf) @)

have been determined in appendix A. The assumed defor-
mation (eq. (1)) has the form of a wave traveling in the positive
z-direction with velocity w/v; hence, the flow of Mach number
M outside the vibrating cylinder is equivalent to a flow of
Mach number M—w/vc outside the stationary cylinder plus
& flow of Mach number — w/re; inside the stationary cylinder.
Thus, by making the appropriate substitutions, the steady-
flow results of appendix A are readily combined to give, for
the outward air force exerted on a vibrating cylinder,

I(,0,t)=Ev*Re [Tw{" (=39 cos no] 3)
where
T=— e F—1,3,m)+picFs (21,5, m) (4)
In equation (4),
a2 K gy
.2 HP . ] 1for b&¢>0
Fiehm= 7 (151<1)
J@ ()]
=75 (&>D)

with
t=[plV1—#
z=[blyF—1

In equations (5) and (6), J, is the Bessel function of the first
kind, HY” is the Hankel function of the first or second kind,
and I, and K, are modified Bessel functions of the first and
second kind, respectively. (See, for example, refs. 14 and
15.) 'The primed quantity in the denominator of each func-
tion is the derivative with respect to the entire argument.
Note that a dimensionless frequency k=w/rc and a dimen-
sionless wave number ¥=R» have been introduced in equa-
tion (4).

Equilibrium condition.—Donnell’s equation for the equi-
librium of thin, cylindrical shells (ref. 10) may be written in
the modified form (see, for example, ref. 16)

1 12(1—
D Iiv*«w+§4 ﬁ v-%vm}h (et 0w i, =1
R (7
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where the subscripts z, 6, and ¢ on w indicate differentiation
with respect to these variables. The operators V* and V—*

are defined by
a? 1 b2 3
V(o 3)

VAVi=ViV-i=1

Substitution of w and ! from equations (1) and (3) into

equation (7) gives
2 2 — 4
D l:(vzq' zg) +1]é41 (1 F-?) v jI-[—h(Vg(Tz 7 o‘a)
@)
pshor— Ry3l=0
as the condition for equilibrium of the motion of the cylinder
wall in the presence of the moving air outside and the

stationary fluid inside the cylinder. Written in terms of
pertinent nondimensional parameters, this expression becomes

and

___(ka_gz)+"‘ (“) F,( k5 )—F(M—F5,m)—
) m k=0 ®

where

f——1 = 71 +5) le((l%_)i‘ 2’[ , Jlr,_g>2+s,+?—:a}

In the preceding definition, s=o¢/E, and ¢,=+/E/p, is the
speed of sound in the cylinder material. Note that, in

equation (8), an additional term. —z % ekt has been added in

order to include qualitatively the effects of structural damp-
ing of the Sezawa (viscous) type. The damping coefficient
¢ i8 actually related to the parameters of the system in a
rather complicated fashion but is always positive. A precise
definition of ¢ is not necessary because, in the following
derivation, it is considered to be a vanishingly small, positive
quantity.
EXTENSION OF EQUILIBRIUM EQUATION TO DIVERGENT MOTION

The flutter equation (eq. (8)) has been derived for sinu-
soidal motion. As has been pointed out, an extension to
divergent motion (of the form of eq. (1) with « a complex
number having a negative imaginary part) is necessary.
This requires the analytic continuation of equation (8) into
the complex %-plane. The only terms in equation (8) for
which this continuation is not trivial are the air-force func-
tions F' and F,. The analytic continuations of these func-
tions are presented and discussed in appendix B. These
Tunctions are analytic throughout the half-plane correspond-
ing to divergent motion and approach the values given by
equations (5) and (6) as k becomes real. That the analytic
extension of equation (8) into the lower half of the «-plane
is indeed the equilibrium equation for divergent motion
of the cylinder can be rigorously shown by the application
of Fourier transform analysis.
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STABILITY DETERMINATION BY USE OF NYQUIST DIAGRAMS

In order to determine the stability states of the structure
whose behavior is governed by equation (8), it is expedient
to examine the variation of the function L in the L-plane as
k traverses, in the clockwise direction, a curve enclosing that
portion of the k-plane corresponding to divergent motion of
the cylinder (the lower half-plane for positive values of ¥ or
the upper healf-plane for negative values of ). This, of
course, is the well-known Nyquist diagram. (See, for
example, ref. 7.) The number of resulting clockwise encircle-
ments of the origin in the L-plane is equal to the number of
zeros of L minus the number of poles of L enclosed by the
curve traversed in the k-plane. Poles of L do not occur in
the unstable half-plane since the functions comprising L are
analytic everywhere in that region. (It should be noted
that, in all instances, the real k-axis is excluded from the
unstable half-plane.) Therefore, the Nyquist diagram gives
directly the number of roots of equation (8) for which the
frequency of oscillation has a negative imaginary part; in
other words, it gives directly the number of modes of un-
stable motion.

With regard to the practical application of the Nyquist
diagrams in the present case, it should be pointed out that
actual computation of successive values of L is unnecessary;
that is, through careful examination of the nature of the
functions comprising L, it is possible to construct approxi-
mate diagrams correct in all essential features and to seo
clearly the conditions under which eritical changes (corre-
sponding to flutter boundaries) occur. Further, it is only
necessary to consider positive values of ¥ because, if ¥ is
replaced by its negative and k by its conjugate, then L is
replaced by its conjugate; therefore, no new flutter boundaries
would result from the negative values of .

ANALYSIS OF EMPTY CYLINDER

Flutter criteria.—If the cylinder is assumed to be empty
(p;=0), equation (8) reduces to

T=t % (k?—szr)—F(M—-k,;,n)—i]% =0 ®)

Let the damping coefficient ¢ be very small but positive.
With this restriction, the functions comprising Z (for 7>>0)
vary with & in the manner shown in figure 2. Note that the
inclusion of the infinitesimal damping is influential only in
the range M—1<k<AM+1 where Im(—F)=0; elsewhere,
Im(—F) is large in comparison with the damping term. In
the range M—1<k<M+1, the damping makes Im(ZL)
negative for positive £ and positive for negative 2. Hence,
for subsonic flow (fiz. 2(a)), the damping insures that
Inm(Z)=0 only at k=0; for supersonic flow (fig. 2(b)), it per-
mits Tm(Z)=0 only at 2=M—1 (in the limit as «—0).
The significance of this will be made apparent by considering
the variation of L as k traverses the path shown in figure 3
(with the other parameters held constant).

First, consider subsonic flow. (See fig. 2(a).) Two
possible resulting variations of L are shown in the following
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(2) Subsonic flow (M<1).
(b) Supersonic flow (M_>1).

Fieurs 2.—Typical variations with % of functions comprising L.
(See eq. (9).)

k—plane

Fraurn 3.~Path enclosing lower half of k-plane (corresponding to
unstable motion for 5> 0).

400194—58— 32

Nyquist diegram (where the full circle at infinity corresponds
to the infinite semicircle in the k-plane):

Sketeh 1.

For different values of the parameters, paths similar to I
or IT may be traced. For path I, there is no encirclement
of the origin and the eylinder is stable; for path II, on the
other hand, one encirclement occurs and the cylinder is
unstable. Since, by virtue of the damping term, Im(I)
must pass through zero at k=0, it is apparent that the
boundary between these two conditions is a static (diverg-
ence) boundary defined throughout the subsonic range by

Re (L)k-o—O——-p 2 ?3 Q—F(M,»,n) (10)

Equation (10) may be put into the form

\ (%>3+A A —B=0 (11)
where

91—
1 (1 #2) 2+0'z T -i;g 0'0
) (1+-5)

and

12(1—p?) F(M,5,1)
HoHe

are positive numbers. Equation (11) has the one real root

h_(B, [B AS)” (B ‘/—AT‘)"
B (§+ atgr) + 4 797 (12)

Thus, for selected values of the other pa.ra.mete.rs, the
thickness ratio corresponding to the stability boundary in

B=—
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the subsonic range may be computed directly. This is the
bounding value of A/R above which the cylinder is stable.
For certain ranges of the parameters, namely when the
Mach number is only slightly less than 1 or when the
wave length of flutter is very large, the approximation

2
F(M,5,n) w—% is permissible. When this approximation

is valid, equation (10) may be solved directly for I/ to yield

el (Guig)

M= o R 2n(n—1)

13)
Equation (13) gives the approximate bounding value of A
below which the cylinder is stable.

For supersonic flow (fig. 2(b)), the possible Nyquist
diagrams resulting when % traverses the path of figure 3
appear as shown in sketch 2.

k=0

Sketch 2.

Since, now, the sign of the imaginary part of L always
changes at k=AM —1, the criterion for a boundary is seen
to be

Re (D)poaey=0=2 & [(M—1p—01—~F(1,5m)  (14)

Thus, the instability iz dynamic, and, since k=y—a;, the
flutter mode is a traveling wave whose propagation velocity

%’ is the velocity of external flow minus the velocity of sound.

The solution of equation (14) for A/R can be carried out
to yield a result in the same form as equation (12) with
appropriate redefinition of A and B. In the supersonic
case, however, the F-function is independent of M and is
actually equal to —1/n; hence, equation (14) may be solved
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directly for the Mach number of flutter to give the convenient

form
1
— 2 __
M—1+‘/Q ok
p b7

Determination of critical stability boundary,—In comput-
ing stability boundearies, & factor which must be kept in
mind is the admissibility of all longitudinal wave lengths
and of all integral values of n greater than or equal to 2.
The critical boundary must necessarily correspond to the
values of ¥ and n for which the cylinder is most prone to
flutter. This critical boundary can be obtained either by
expressing the bounding value of 4/R as a function of the
rest of the parameters (as in eq. (12)) and maximizing this
value of /R with respect to both ¥ and » or by finding the
bounding value of M (as in eqs. (13) and (15)) and mini-
mizing with respect to 7 and n. Of the two alternatives, the
latter is more easily accomplished, analytical minimization
of M being possible. For subsonic speeds, however, the
expression for M (eq. (13)) is only approximate and, in some
instances, it becomes necessary to maximize A/E as given
by equation (12). This is most readily achieved by graphical
methods.

Minimization of M can be performed by first minimizing
Q2 with respect to » and then minimizing the resulting AL
with respect to #. The minimization with respect to v
is particularly simple when there are no imposed midplane
stresses (o,=0s=0); it can be performed with respect to

2
the quantity (?—l—%z) - The result is

LGN

(15)

" R 4o
at
EY-ER w

R

2
However, the quantity (?-l—%—’) is itself & minimum at ¥=n;

hence, equation (17) can be satisfied only when

B

(18)

and, if this condition is violated, Q* can never achieve the
value given by equation (16). The minimum value it can

achieve is
(@] B

If the result given by either equation (16) or equation (19)
is substituted into equation (15), the minimum value of A/
is seen to correspond to the smallest admissible value of »

(19)
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(that is, n=2); hence, for supersonic flow, the critical boundary is given by

e\ h
2(2’) R 1

M,=14
VI2A—4h) op
o B

<_< 12(1—,; )

L (20)

o Jol

Similarly, for subsonic flow, if the approximate equation,
equation (13), is valid, the substitution of equation (16)

into equation (13) yields the critical boundary
( 4 g >
1—Ms") ——= 1)
V12(1—u?)

7 "R,\/ (c. <R)
V12(1—p%)

Numerical example,—For illustrative purposes, the critical
stability boundary (n=2) has been computed for an empty,
unstressed aluminum cylinder at sea level; additional curves
corresponding to n=3, 4, 5, and 10 have been obtained for
comparison, These results are shown by the solid curves
in figure 4. Portions of the curves in the subsonic range
were obtained by graphically maximizing h/R with respect
to ¥ as previously mentioned. It is interesting to examine
the wave lengths of the flutter modes corresponding to these
boundaries. In the range where equation (18) is satisfied,
solution of equation (17) yields two different wave lengths

A2
-
—— Donnell's theory (ref.10) n=2.
ok ———"' Fliigge's theory (ref I2) i
.08}~
X
I |-
o
5
- _06 -
g /
3 - /
S Stable
04}
02—
Unstable
1 1
o] | 2 3 4 5

Fraurse 4.—Stability boundaries for empty, infinitely long, unstiffened
aluminum cylinder at sea level with no applied membrane stress.

20— " 16

1_1
9P
p

(m)

L]
E

for the same critical thickness ratio. The larger one of
these two wave lengths is shown in figure 5 for supersonic
Mach numbers in the form of a plot of the aspect ratio of
the flutter mode n/v (the ratio of longitudinal to circumferen-
tial wave length) against Mach number for n=2, 3, 4, and 5.
The aspect ratios associated with the smaller wave lengths
are not plotted; they are merely the reciprocals of the ones
shown. At the higher Mach numbers, the critical value of
h/R becomes large enough to cause equation (18) to be
violated; when this happens, the two flutter modes coalesce
to give a single flutter aspect ratio of unity as shown by the
horizontal cutoff line in figure 5.

As has been pointed out, Donnell’s theory is somewhat
inaccurate for small values of n. (See, for example, ref. 12.)
In order to obtain some idea of the magnitude of the resulting
error, & new Q-function based on a simplified version of
Fliigge’s cylindrical-shell theory (see, for example, refs. 11
and 12) has been derived and minimized with respect to ¥;

30 .

251

\
‘\ —— Donnell's theory {ref.i0)
\ ~—— Fliigge's theory (ref.12)

Aspect ratio, n/¥
— n
3 o
T T

o
T

1 ] 1
0 ! 2 3
Mach number, M

Fraure 5.—DPanel aspect ratio of critical flutter mode for empty,
infinitely long, unstiffened aluminum cylinder at sea level with no
applied membrane stress.
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the details of this derivation are presented in appendix C.
Computations in the supersonic range with the new (Fligge)
@-function result in the dashed curves shown in figures 4
and 5. As in Donnell’s theory, the Fligge theory yields,
for the lower thickness ratios, two values of wave length
for which @ (and, hence, the Mach number) is & minimum.
In contrast with Donnell’s theory, however, the two wave
lengths are not equally critical; the larger one always yields
8 lower Mach number. For this reason, only the higher
aspect ratio and its associated stability boundary are plotted
in the figures. The critical boundary (n=2) is found to
require thickness ratios approximately 30 percent higher
than those predicted by Donnell’s theory. The two curves
for n=3 still differ by 10 to 15 percent; but, for n=4, the
two theories agree very well. For the sake of clarity, the
stability boundary associated with the lower aspect ratio
has not been shown in figure 4. It should be remarked,
however, that this boundary agrees very well with the bound-
ary given by Donnell’s theory, even for n=2. The prac-
tical implications of the results shown in figures 4 and 5 are
discussed subsequently.

ANALYSIS OF FLUID-FILLED CYLINDER
‘When the cylinder is assumed to contain a fluid, the addi-
2
tional term p—p‘(%) F,(—g— k,v,n) in equation (8) must be
i

included. A typical plot of this function for real values of
k iz shown in figure 6. Note that the force is always real
and becomes infinite at the resonant frequencies

2
kl=% 1'!'% (7=1,2,3,...) (22)

where the z,’s are the zeros of JJ,’ (2).

Since F; is always real for real values of %, the imaginary
part of L can again be zero only at k=0 in the subsonic
range and at k=A{—1 in the supersonic range.
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F1qure 6.—Typical variation of F; with k.
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boundaries can consequently occur only at these frequencies.
In the subsonie range, the inclusion of Fy has no effect upon
the stability boundaries since F;=0 at £=0. In the super-
sonic range, however, the inclusion of F; has & considerable
effect on the stability boundaries, not only because of the
additional force at k=M—1 but also because of the reso-
nances of Fy.

The condition for the stability boundary at supersonic
speeds is

Re(L)g_‘][_l—O [(M 1)2 92 +

Lrx(dYr[La-nin] @3

This equation can be solved for /R in the same form as
equation (12); that is,

h_ (B, [BT AN (B [BT AV
R=(2—H/z+z—7 +(§“\/T+ﬁ) @)
where now
(M—l)]
o)

_120—pH I N
iél:’z)) - (%) (52 (2) (G o)

3 3+ s He300—
B
The variation of A/R with Mach number for particular
values of the other parameters is shown in sketch 3. Note

and

1
|
I
1
I
|
i
1
i
!
h/R |
|
|
I
|
|
1
I

) ! +% 1k [+, I+ Ky
Sketch 3.

that /R becomes infinite when the Mach number is equal
to 1+k; (5=1,2,3,. . .). (Seeeq. (22).) This arises from
the infiniteness of F; and, consequently, of B at these Mach
numbers. Note also that the footpoints of the secondary
stability boundaries occur when B=0. The numbers within
the regions separated by the solid lines indicate the degree of
instability as determined by use of Nyquist diagrams.
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Since the value of 2/R for the empty cylinder is given by
equation (24) with F; equal to zero, and since F, is positive
for values of M less than 14k, it can be seen that the fluid
inside the cylinder has a destabilizing effect.

In order to find the critical stability boundaries, all values
of 7 and n must be considered. Of particular interest in this
connection is the fact that, for very large values of », the
infinities shown in the sketch all approach a value of M equal

to 1+%. (See eq. (22).) Thus, the critical stability bound-
aries would appear as shown in sketch 4. For Mach numbers

hR

c
0 | i+
M

Sl_{etch 4,

greater than l-l-%’-, the cylinder is unstable to-an infinite de~

gree. If the fluid inside the cylinder is air at the same tem-
perature as the surrounding air, this limiting Mach number
would be equal to 2. If the cylinder contains a relatively in-
compressible fluid, however, this Mach number could be very
high, In any event, the result is somewhat anomalous; it is
probably caused by the use of linearized potential-flow
theory and, undoubtedly, would not occur for real fluids.

SOME REMARKS ABOUT THE SOLUTION FOR AN UNSTIFFENED CYLINDER

On damping.—The stability criteria for the infinitely long,
unstiffened cylinder which were derived in the preceding sec-
tions were obtained by including the effects of structural
damping and then taking the limit as the damping ap-
proached zero (e—0). This procedure was followed because
different criteria are obtained when damping is not considered
(e=0). This important fact is illustrated in appendix D
where the stability criteria for the empty cylinder with zero
damping are discussed. Since structures always exhibit some
damping, it is apparent that stability criteria obtained by
taking the limit as ¢ approaches zero are more realistic than
those obtained by setting ¢ identically equal to zero. It is
interesting to note that, in this case, the addition of damping
makes the structure more prone to flutter. This somewhat
surprising result may be explained by the fact that a damping
force, even though in itself dissipative, can cause phase
changes in such a manner as to allow the moving outside air
to feed more energy into the structure; the result is a net
energy gain,
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On the effects of midplane stresses.—The qualitative
effects on flutter of the midplane tension stresses o, and oy
(arising, say, from a static-pressure differential across the
cylinder wall) may be determined by considering the defini-
tion of. the wave speed Q@ yielded by the Donmell theory
(immediately following eq. (8)). As expected, both o, and
o contribute to increased stability since they increase Q and,
hence, Mach number (see eq. (15)). Perhaps most signifi-
cant, however, is the influence of midplane stress on the pre-
dicted wave length of the flutter mode. Note that, while
the presence of o, stresses increases £ uniformly for all wave
lengths, the increase due to ¢y is proportional to the square
of the aspect ratio nfy¥. Thus, the two minima of Q are no
longer equally critical ; the smaller minimum (and, hence, the
most critical boundary) is seen to correspond to the shorter
longitudinal waves. This is opposite to the result yielded by
the more accurate Fliigge theory for the cylinder without
midplane stress; thus, it would appear that addition of
enough circumferential stress to the Fliigge theory might
produce .a shift of the critical flutter mode from one with
very long waves to one with very short waves. This possi-
bility is important since results for an infinitely long cylinder
would be applicable to & finite cylinder only if the wave
lengths of the flutter modes were small in comparison with
the length of the finite structure.

Thus, in spite of the results yielded by the analyses of the
unstressed cylinder pertaining to the wave length of flutter,
it must not be concluded that analysis of an infinitely long
cylinder has no application to cylinders of finite length. In
fact, it may well be that, even for the unstressed cylinder,
the minimum @ corresponding to the predicted most critieal
flutter mode (with long waves) should be arbitrarily ignored
in favor of the secondary minimum. Then, in view of the
aforementioned agreement between Fliigge’s and Donnell’s
theories at this minimum, the Donnell theory would be ade-
quate for all n(=2), the critical boundary being specified
by the solid curve for n=2 in figure 4. The aspect ratio
of the flutter mode, in this case, would be the reciprocal of
the value given in figure 5.

On the effect of longitudinal stringers.—Although the
analysis has been carried out for the case of an unstiffened
cylinder, the flutter criteria may also be applied to the case
of a cylinder with essentially rigid, longitudinal stiffeners.
These longitudinal stiffeners would have the effect of raising
the minimum value of # and, hence, of decreasing the criti-
cal thickness ratio of flutter. For example, the curve for
20 stringers (n=10) has been plotted in figure 4.

Thig completes the discussion of unstiffened cylinders; an
analysis of ring-stiffened cylinders is presented in the next
section.

RING-STIFFENED CYLINDER

The ring-stiffened cylinder consists of the unstiffened cyl-
inder with added, rigid ring stiffeners which prevent radial
deflection at. the locations s=Zja (=0, 1, 2, . . .). (See
fig. 1(b).) The stiffeners are assumed not to interfere with
the flow of air outside or of fluid inside the cylinder. The
analysis proceeds along the lines of that in reference 7.
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DERIVATION OF EQUATIONS

If the assumptions are made that the cylinder wall may
deform into any number of sinusoidal waves around its
circumference and into any shape periodic over 2 bay lengths
in the longitudinal direction, the deformation may be
written, with complete generality, as

@ —’Eﬁil
D5 ane ¢ e'vtcosnd

== —c

w(z,6,t)=Re (25)

provided that the coefficients a, satisfy the constraining
relations

f_‘, =0
e (26)
2 (=D

These conditions correspond to zero deflection at the ring
locations. They may also be written as

TZ‘J am=0w

M= —

(m odd)

2 Gm=0

mo—o

o 27

(m eyen) J

Only one circumferential term is included in equation (25)
because there is no structural or aerodynamic coupling be-
tween the various cosine terms. Also, in this case, n=1 is
admitted. The assumption of periodicity over 2 bay lengths
is made because it permits a considerable degree of generality
withoub overcomplicating the analysis. Tt is believed that
the critical flutter mode would be of this type.

Air forces—In view of the linearity of the aerodynamic
theory, the air forces exerted on a cylinder executing the

motion given by equation (25) may be determined by-

separately considering each term of the summation over m
and superposing the results. Hence, the aerodynamic load-
ing on a cylinder deforming in the shape of the traveling
wave
|: -2z (zit) ]
Wy(x,0,0)=Re| ame ¢\ ™ /cosnd (28)
is sought.
If equation (28) is compa.red with equation (1), it becomes
apparent that the air force is given by equations (3) to (6)

when the substitutions =@y and y=m=/a are made. Thus,
the total air force may be written immediately as

) ® iz
U(z,0,)=R 2 Rel >3 l.awe ¢ €'*f cos nB) (29)
mm—o
where, for m =0,

Ipy=— pc’ﬂt’F(I\I -—;’;—: ma,n )+ png’szf(g 7’:;: ma, n)
(30)
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The functions F and F; are given by equations (5) and (6).
They are repeated here for convenience.

F%%M=?£5% < (31)
~eoe (~{3mueze) >
F,(E,b,ﬂ)=52§%‘(/8) (1g1<1) .

_ f’z'.%.('?i) (1E>1) |

where

¢=bly1—8
z=|b|E—1

In equation (30), k=wafrc and a=Rzxfa. The quantity «
is the ratio of one-half the circumference to the distance
between the rings. For the special case of m=0, a limiting
process gives

lo=—pcG(k,2,m)+pic*Gy (‘(% k:“y”) (33)

In equation (33),
. [ 1for¢<0
(={ammiso) ©

HY («
Gem=¢ o ey
Gug o=y D (35)

Equilibrium conditions.—By virtue of the assumed longi-
tudinal spatial periodicity of the deformation, satisfaction
of equilibrium over any interval of length 2a assures satis-
faction of equilibrium over the whole length of the cylinder.
Thus, it is sufficient to write Donnell’s equation for the
segment 0 <2< 2a as

l:V‘w+ 11,4 12<(;>#?) v~ "wm:.—:| —h (Uz'wn:"l_ 773 Wos +

P,]leu=l($, 07 t) +P0(9,t)5(55) +Pl (Brt)a(m—a’)

where Poand P, are the reaction forces exerted on the cylinder
wall by the two ring stiffeners included in the mterval and
where §(z) is the Dirac delta function.

Let

(36)

Py, t)=Re (Poet* cos 710)}
(87)

P.(6,t)=Re(Pé'“* cos nb)

If P, and P, from equations (37), w from equation (25), and

I from equation (29) are substituted into the equilibrium

equation, equation (36), and if this equation is then mul-
imrzr

tipied by ¢ © and integrated over the interval, therc
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results

mix? | n2\?, 12(1—p?) <m7r>

20X D z le TR4<R> maﬂ_z ’IL’)’
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71'2 — —_—
+1 (2 et 75 00 )~ R 5 L =Pt (— 1P,

, (m=0, +1,£2,43,...) (38)
Hence, for 8,70,
Pot-(—1)"P;
=_§$t§’pR)_ 1 (39)
B
where, for m 0,
=l (Q 12t (ci) A (c% %y ma,n )+mF (M——;I;—; ma,n )+ l%[ ek
with
Cs h
cE™ me 12(1—;1.’) ( >
"2 ) Ly [ ma >2+"=+ ma) 7
ma
Note that, as in the case of the unstiffened cylinder, & term | (which implies that a,=0 when m is even) and
has been added to each of the 8,’s to approximate the effect - 1
of damping (e, >0). In the limit as m—0, > ==0 (43)
(m odd)

2
ﬁo=%%(no’—k’)—%<%) 6 (Lh,0n)+ @t m)+iak

where

12(1 /.l.’) 5

®

Finally, substituting from equation (39) into the constraining
relations, equations (27), gives the following conditions for
the existence of the motion defined by equation (25):

-\,/12(1—;1. a\/

(P—P) > ——0 (40)

m=—o Bm

(m odd)

(F 0+P- 1) i 5l=0 (41)

mm—~o Pm
(m even)

Inspection of these relations indicates that simultaneous
satisfaction of the equilibrium equation and the restraint
conditions can be achieved in a nontrivial fashion in several
independent ways. One possibility is that

P 0=P 1
(which implies that a,=0 when m is odd) and

@

P Lo 42)
(e
and another is that
P 0=—13 1

As has been noted, the derivation herein and the results
achieved exactly parallel those obtained in reference 7 for
the infinite, flat plate. As pointed out therein, still another
nonfrivial solution is found when the restriction B,0
(which characterized the foregoing results) is removed.
Specifically, if two or more B8,’s of the same type (m odd or
even) vanish simultaneously, a flutter mode may exist.

Equations (42) and (43) are conditions for the existence of
motion of constant amplitude; equation (42) corresponds to
motion which is identical in each bay, whereas equation (43)
corresponds to motion having the same amplitude from bay
to bay but with alternating direction.

. STABILITY BOUNDARIES

As in the case of the unstiffened cylinder, the Nyquist
criterion can be used to investigate the states of stability of
the stiffened cylinder. In this section are given the results of
a limited investigation which was chiefly concerned with the
examination of the following three-term approximation to
equation (42):

1,1, 1 '

Subsonic flow.—In applying the Nyquist diagram tech-
nique to the function &, account must be taken of the poles
of NV at the zeros of 8; and B_;. (There are no zeros of §,.)
The results of such an application with e+0 show clearly
that, for subsonic Mach numbers, the only possible instability
i8 divergence; further, the three-term approximation leads’
to as many as three static stability boundaries as shown in
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Sketch 5.

with AL (with other pertinent parameters fixed) is shown.
The subscript mer indicates that the thickness ratio is
maximized with respect to n. The numbers indicate the
number of unstable roots of equation (44) corresponding to
each region. Note that the upper curve corresponds to the
condition that two or more S.’s of the same type vanish
simultaneously, whereas the other curves result from the
condition (V)z.o=0.

Additional curves would result from the addition of more
terms to NN and still more curves would result from the
consideration of the odd solution, equation (43); further,
examination of a four-term approximation (m=1, —1, 3,
and —3) to equation {43) indicates that, for reasonable
values of «, the most critical boundary for either the even
or the odd solution must stem from the condition
(B)reo=(B1)r0=0. (For very small values of «, the dis-
tance between rings becomes large and values of m other than
unity may be critical.) The position of this critical boundary
has been computed for an unstressed aluminum cylinder at
sea level for various representative values of the aspect-ratio
parameter «. The results are shown in figure 7. These
curves correspond to various values of # ranging from 5 up-
ward as illustrated on the plot; since n is large, Donnell’s
theory is sufficiently accurate.

Note that the thickness ratios required for static stability
at subsonic Mach numbers are extremely small; therefore,
divergence at subsonic speeds is probably not a critical
design factor. o

Supersonic flow.—Application of the Nyquist criteria for
supersonic flow is not so readily accomplished without the
performance of further computations. It is clear, however,
that divergence boundaries extend into the supersonic range
and that flutter boundaries arise which probably become
more critical than the divergence boundaries.
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Figure 7.—Critical divergence boundaries for infinitely long,
. unstressed, ring-stiffiened aluminum oylinder at sea level.

The definition of these flutter boundaries requires that
solutions be obtained to equations (42) and (43) or to suitable
approximsations, such as equation (44). This, in turn, re-
quires extensive computations, especially since the resulting
thickness ratios must be maximized with respect to #. This
maximization can probably only be achieved laboriously by
making each computation for several values of n.

CONCLUDING REMARKS

A preliminary theoretical investigation of the aeroelastic
stability of infinitely long, thin-walled unstiffenod and ring-
stiffened circular cylinders has been conducted by using
Donnell’s cylinder theory and linearized unsteady potential-
flow theory. A limited study of the resulting stability
criteria has yielded the following information.

For unstiffened cylinders with vanishingly small structural
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damping, the only possible instability at subsonic Mach
numbers is static divergence; in supersonic flow, however,
flutter is found to occur for sufficiently thin cylinders in the
form of a traveling wave whose propagation velocity is the
velocity of the external flow minus the speed of sound. For
an empty, unstressed aluminum cylinder at sea level, the
critical boundary is found to correspond- to a mode of de-
formation having only two waves around the circumference
but a very large longitudinal wave length. For this case,
the use of the more complicated cylinder theory of Fliigge
is necessary for accurate determination of the critical ratios
of cylinder-wall thickness to radius. These are found to be
relatively large.

Consideration of the effects of midplane tension stresses
not only shows them to be stabilizing but indicates that large
circumferential stress shifts the critical flutter condition from
the mode with very long longitudinal waves to one with very
short longitudinal waves for which Donnell’s theory is
adequate. The magnitude of the stabilizing influence of
the midplane stresses has not been investigated.

The addition of an internal fluid has a destabilizing effect
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on the unstiffened cylinder. In fact, the anomalous result
is found that for Mach numbers greater than 1 plus the ratio
of the speeds of sound in the fluids inside and outside the
cylinder, no adjustment of the physical properties of the
cylinder will render it stable.

The presence of even the smallest amount of structural
damping is found to be an important factor in analyses of
infinitely long, unstiffened cylinders.

For the ring-stiffened cylinder it is found that flutter is
not possible at subsonic Mach numbers and that only very
small thickness ratios are required to prevent divergence.

. Although both panel flutter and divergence are possible at

supersonic Mach numbers, no numerical results have been
obtained; extensive computations would be required for a
complete determination of the stability boundaries in this
range.

LaNGLEY ABRONAUTICAL LLABORATORY,
NaTIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Lanerey Fievp, VA., January 11, 1956.
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APPENDIX A
STEADY LINEARIZED FLOW PAST A STATIONARY DEFORMED CYLINDER

In this appendix are derived the perturbation pressures
exerted by a2 steady external or internal flow of Mach
number M, on an infinitely long thin-walled cylinder with
the deformation

w=Re@e ™ cos nb) (A1)

where n is & positive integer and the wave number » may
be either positive or negative. The Mach number A, is
positive for flow in the positive z,-direction and negative
for flow in the negative x,~direction. (See fig. 8.)

In the cylindrical coordinate system (z;, 7, 8), the linearized
potential-low equation is

(A—B99, , - b5 bur=0 (A2)

where ¢ is the velocity potential and the subseripts z;, 7,
and 6 indicate differentiation with respect to these param-
eters. With the assumption that

¢ (@1,m,80)=Re[f(r)e~*t cos nf] (A3)
equation (A2) becomes
ot ot -1 | 10 (a9

which, for supersonic flow (|3£;]>1), has the solution

#)=AHP (|| /MP—1r) +BH® (| VM7 —1r)  (A5)

Ficure 8.—Cpylindrical coordinates for analysis of flow past
stationary, deformed cylinder.

and, for subsonic flow (|3£;|<1), has the solution

SO =AL(|y| V1—Mr) + BE,(|o| VI—M:?r)

AIR FLOW OUTSIDE CYLINDER

(A6)

For air flowing over the outside of the cylinder, the
formulation of the problem is completed by the specification
of the boundary condition

¢ (xl,R,()) =M10'u);l (A-7)

at the cylinder wall and the proper conditions at infinity.
By use of equations (A1) and (A3), equation (A7) becomes

(A8)

The resulting pressure perturbation Ap can be calculated
from the linearized Bernoulli’s equation

s fi(Ry=—iMcrw

Ap (@1,r,0)=—pMi0¢z, (A9)

and is

Ap(z1,7,0)=pM,cRe(tfre~*"* cos nb) (A10)

Supersonic flow.—For supersonic flow, the Sommerfeld
condition (that is, that there be no incoming disturbances
from infinity) requires that, for large values of r, the velocity
potential ¢ be essentially a function of #;— 8r for M, >0 and
& function of z;4Br for M,<<0 (where gB=yM—1). Then,
from the relation for ¢ (eq. (A3)), it is L:{J.ppa.rent that, for

large values of r, () must behave like ¢ al?, Substituting
the asymptotic approximations (ref. 14)

5 i em(ntl)=

Hs‘l)(z)N %8{[’ ( +§)2]
i[em(ni])E
HPE)~ /= [=(3)3]

into equation (A5) gives, for large values of 7,

x 1\~
[e_{(ﬂ%)iAeilylﬁrq_ei<ﬂ+§);’Ba—i|rlﬂf:l (A12)

(A11)

2
1r|u|ﬁr

Hence, the Sommerfeld condition requires that B=0 for
Mp>0 and A=0 for M;»<<0. Therefore, equation (AS5)

becomes
) 1 for My>0
F)=AHY (p|yB7—1r) <7={2for M0

)~

(A13)
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If, now, 4 is evaluated by use of the boundary condition,
equation (A8), and the resulting expression for f is substi-
tuted into equation (A10), the perturbation pressure on the
cylinder wall is obtained as

AP(II,R,0)=p02RBI:RV2MI ‘g(,,g'?) We™"1 cos nB:I
. 1 for Myp >0

= Al4

(7 {2 for M1v<0) (414)

where
z=R|y|vM*—1

Subsonic flow.—For subsonic flow over the outside of the
cylinder, the potential must remain finite at infinity; hence,
equation (A6) reduces to

J@)=BE,(yW1—M¢*r)

If B is evaluated by using the boundary condition, equa-
tion (A8), and the resulting expression for f is then substi-
tuted into equation (A10), the resulting perturbation pres-
sure on the cylinder wall is

(A15)

Ap(z,,R,0)=pc* Ro l:Rv’Mf L) we™ 1 cosnd | (A16)

KL ())
where {=R|v|{1—M;3
FLUID FLOW INSIDE CYLINDER

It is assumed that the fluid inside the cylinder may be
other than air and may exist under different conditions from
the air outside the cylinder. Thus, the boundary condition
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at the eylinder wall is

f,(B)=—1iMcpw (A17)
and Bernoulli’s equation may be written as
Ap(1,7,0)= p Myc; Re(@fvet"1 cos nb) (A18)

where the subscript ¢ refers to the properties of the fluid
inside the cylinder.

For either supersonic or subsonic flow, the velocity poten-
tial must remain finite throughout the cylinder. If this
requirement is to be met at r=0, the solutions given by
equations (A5) and (A6) must reduce, respectively, to

. " fe)=AJ, (p|MP—11) (A19)
an
FO=AL(yW1—DM:?r) (A20)

With the constant A determined through the use of the
boundary condition, equation (A17), and the resulting
expressions for f substituted into equation (A18), the per-
turbation pressure for |A;|>>1 becomes

Ap(zy, R,0)=p.c,'Re I:Rv’Ml " J"(,?) we™1 cos nB] (A21)

and, for |M;|<1,

Ap,(z1,R,0)=p.c.’Re I:Rv’M]’ Ig"(,g_) we™"1 cos 7w:| (A22)
These results hold for flow in either direction. Note that, for
these air forces, the pressure is always in phase with the
motion.
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APPENDIX B
AIR FORCES ON A CYLINDER IN DIVERGENT OSCILLATION

The outward lift force on a cylinder wall executing the

simple harmonic motion (w real)
w(z,0,t)=Re(we e " cos n) B

in the presence of moving air outside and a stationary fluid
inside the cylinder has been determined. (See egs. (3) to
(8).) The amplitude of this force is expressed by

i:—-pc’F (M—v—c;: Rv,n)-i—p,ch, (%y RP,')’L) (B2)

In equation (B2),

-

P&, Brm=t (<) }
®3)
. HP@) - (. [1for Ryt>0
Y HY @) (J_{z for Rys,:<0> (m>1))
and
Fi(t, Ryyn)=§ fﬁ({}) (lgl<) o
—p.JA2) 18>0 (
2J,2) )
where

t=Rp|J1—8
z=Rly|/£—1

It is desired to extend these air-force functions to apply to
divergent motion of the cylinder (v complex with a negative
imaginary part). This extension can be made by using
analytic continuation; in fact, it can be shown by Fourier
transform analysis that the necessary and sufficient condi-
tions for the extensibility of the air-force functions to
divergent motion are that the air-force functions possess
analytic continuations which have no singularities anywhere
in the unstable half-plane (Im(w)<<0) and reduce smoothly
to equations (B3) and (B4) on the real axis. Singularities
may possibly exist along the real axis, but the real axis is
specifically excluded from the unstable half-plane.

Consider the function F(tRv,;n). Examination of the
manner in which @ appears in F (see eq. (B2)) shows that the
unstable half of the &plane is the upper half-plane if » is
positive and the lower half-plane if » is negative. It can be
verified that the desired analytic continuation of F into the
proper half-plane is given as follows:

EaKn(Rlyl Vl_fz)

&, By, n)=R|v|-\/l-—52 K/ (Bp1—8)

(B5)

where the desired branch of the multiple-valued function I
is the one for which the cuts are as shown in sketch 6:

£-~plane &-plane

v>0 v<0O
Sketch 6.

__2HP(REp)
F(’\/:?’-’ Ry, n)—‘RlylHSy(R )
__2HP(R|»|)
T RP|H2(R|v])
As Im(¢) approaches zero from the proper direction, tho
definitions given by equations (B3) result. Furthermore,
no branch points or cuts of the function F occur in the
unstable half of the &plane, and, in addition, Nyquist
diagram techniques can be employed to show that there are
no poles of F in this region.
In a similar manner, the analytic continuation of F can
be expressed in the form

and

(»>0)
(»<0)

(B6)

2L (Ry1I—F)
Rly|y1—8 L/ (B|y|1—8)

No difficulties with branch points occur for Fy; the functions
I, and I,’ are entire functions and the combination I,/zI,’
is an even function. Therefore, F is inherently a single-
valued function of £.

The air forces used in the analysis of the ring-stiffened
cylinder can be similarly written for divergent motion. Tor
m#0, it is only necessary to replace » by mx/a in equations
(B5) to B7). For m=0, it is necessary to specify the air
forces separately. Thus, for divergent motion (see egs.
(33) to (35)),

(B7)

Fi(E: RV} n)

lo=—p*G ks, )+ i02G( 2 Iy, n) ®8)
where ‘
@
G(E; a, n)"—'“ngam(_g%' (Bg)
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6 o =5 (B10) | ®lons the positive imsginary axis and
The desired branch of the multiple-valued function @ is the G, n,0)= ag "’(2:) (B11)

one for which the cut extends from the origin to infinity

APPENDIX C

EQUILIBRIUM OF UNSTIFFENED CYLINDER—FLUGGE’S EQUATION

The simplifying assumptions used in deriving Donnell’s differential equation (eq. (7)) result in a loss of accuracy
when the condition #*>>>1 is violated; further, terms which become important when the longitudinal wave lengths
become large (that is, when the behavior of a cylinder approaches that of a ring) have been omitted.

The more complicated theory proposed by Fligge (see, for example, ref. 11) is not characterized by either of these
limitations. Fliigge’s equations may be written in the form of a single equation in w, which, for G/E)*<<1
reduces (see refs. 11 and 12) to

Lo [120—=¢) 2@~

D V‘w } R‘ (h/R)g z:xa::T Rz z:oa+R4 w9989+2#R%m+610m09+2(4

) w:zooaa+ T Wesoses +phw,=l (C1)

where imposed midplane stresses have not been included. As in Donnell’s equation, equation (Cl) takes no account
of inertia forces in the longitudinal and circumferential directions.
Substitution of w and [ for the unstiffened cylinder (egs. (1), (3), and (4)) into equation (C1) gives

3 i b (a2t (ﬁy 7, (ﬁ k3, n)—F(M—-k, 5,m)—i TET =0 (C2)

where the term —1 l_[ ¢k has been added to include qualitatively the effects of Sezawa (viscous) damping and where, now,

i [ ORhig] B s G s ]

Equation (C2) is precisely equation (8); hence, the flutter boundary in the supersonic range for the empty, unstressed cylinder
is still defined by

M=1+

(C4)

but with © given by the more complicated function, equation (C3). As before, the critical boundary corresponds to the
minimum vealue of M agv and n are varied. Setting dQ3/0y=0 yields '

F‘°+3n’z73+[2n‘+2(3—2p)n2—lg(1h—_‘;i)] P [2n4—2(5—2y)n=+4(2—y) 12(1— “2):| S —1)F— ¥t —1)2=0  (C5)
(%) (&)

Careful examination of equation (C5) indicates that, for small values of /R, there are two minimums of Q% with an intervening
maximum, Computations have been made for an aluminum cylinder at sea level by letting n=2, 3, and 4; both the minimums

of 9? were checked and, through equation (C4), the boundaries corresponding to the lower of these were determined. These
results are shown by the dashed curves in figure 4; in addition, the corresponding wave lengths are given in figure 5.
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APPENDIX D
IMPORTANCE OF DAMPING IN UNSTIFFENED CYLINDER

It is of interest to examine some of the results of an
analysis of the empty, unstiffened cylinder which takes no
account of damping (as opposed to the analysis in the body
of this report which treats a cylinder in the limit as damping
approaches zero). The equilibrium condition, equation
(9), reduces to

I E%% (R— Q) — F(M—F, 5, n)=0 ®1n

and its constituent functions vary as in figure 2 except that
now Im(L) =0 throughout the range M—1<k<M+1.

A typical Nyquist diegram (resulting when % traverses
the path of fig. 3) is shown in sketch 7 which corresponds

Stable path’

Sketeh 7.

to _the particular conditions »>0, 0<M—1<Q<M,
Re(L)rarc—1>>0, and Re(dL/Ok) ro2-1<<0. (The infinitesimal,
counterclockwise semicircles correspond to infinitesimal,
counterclockwise semicircles traversed by % to exclude zeros
of L on the real axis from the lower half-plane.) These
particular conditions are illustrated because they show
clearly the possible existence of a stable condition with

Re(L)rar—1>>0, & circumstance found impossible with damp-
ing present. The reason for the difference, of course, is
that, for k>0, the damping term is a negative imaginary
quantity and even the smallest amount of damping shifts
all the portion of the diagram corresponding to the range
M—1<k<<M+1 below the real axis.

Note that, for the case of zero damping, satisfaction of
equilibrium (Z=0) with % real is not always sufficient for

“definition of the boundary; for the conditions in the cited

example, the roots of Z=0 do not pass directly from the
upper into the lower half of the %k-plane as the other param-
eters are varied, but linger awhile on the real axis. In-
stability occurs when a root leaves the real axis and enters
the lower half of the k-plane. For the cited example, this
definition corresponds to the simultaneous solution of the
equations

L=0.

oL_, D2)
=

in the range M—1<k<M.

Another significant difference in the two analyses is that,
when damping is ignored, the instability in the subsonic
region is low-frequency flutter and no purely static instability
of the cylinder is possible. Similar differences would be
found for the fluid-filled cylinder if the damping were
ignored. The fact that the two assumptions, e->0 and
=0, produce such discontinuously different results testifies
to the importance of the presence of damping in the un-
stiffened cylinder.
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